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Electrostatic charging changes the critical temperature of superconducting thin layers. To understand the
basic mechanism, it is possible to use the Ginzburg-Landau theory with the boundary condition derived by de
Gennes from the BCS theory. Here we show that a similar boundary condition can be obtained from the
principle of minimum free energy. We compare the two boundary conditions and use the Budd-Vannimenus
theorem as a test of approximations.
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I. INTRODUCTION

Much experimental effort is devoted to find superconduct-
ing materials with critical temperatures as high as possible. It
is well known that the critical temperature depends on the
charge-carrier density. The charge-carrier density can be
changed by doping, and to some extend it can also be
changed by electrostatic charging. Consequently it is an at-
tractive task to determine, how electrostatic charging evoked
by an applied electric field changes the critical temperature
of superconductors. Generally the experiments revealed that
it is easier to increase Tc than to decrease it.1,2 The Ginzburg-
Landau �GL� theory with the de Gennes boundary condition
can be used to understand this behavior.3

The field effect on the superconductivity can be sketched
as a two-step process. First, the field polarizes the surface
pulling electrons out or pushing them in. This results in a
change in the electrostatic potential which modifies the local
density of states. Second, the electrostatic potential affects
the superconductivity via the density of states. The second
step has been studied within various approximations ranging
from the GL theory4 over the Bogoliubov–de Gennes
method5 and the de Gennes boundary condition3 up to
Nambu-Gor’kov Green’s functions.6–8 In these studies the
electrons of a metal were restricted to a half space, and their
response to the applied field was described by a simple ex-
ponential screening.

The aim of this paper is to describe the interaction of the
field with electrons in more detail. We show how a supercon-
ductor screens the external electric field and to which extent
the boundary condition derived from the minimum free-
energy principle is compatible with the de Gennes boundary
condition.

Charges at a solid surface partially leak out of the surface.
This creates a surface dipole. The Budd-Vannimenus
theorem9 describes the step in the surface potential due to
this surface dipole as a simple expression of the bulk free-
energy density. Therefore it is well suited to test the approxi-
mations used in this paper.

In Sec. I we explain the model and the parts considered in
the free energy of the superconductor and solve the Euler-

Lagrange equations for the GL and charge-carrier wave func-
tion and the surface potential. In Sec. III the corresponding
equations outside the superconductor are solved, and in Sec.
IV the continuity requirements determine the remaining con-
stants. Section V presents the numerical values which are
compared with the de Gennes boundary condition in Sec. VI.
Finally we conclude in Sec. VII.

II. FREE ENERGY IN THE SUPERCONDUCTOR

We start with the free energy

F =� �fTF + fGC + fGL + felst�dr , �1�

where we include only the terms most relevant for the above
specified problem.

The first term fTF is the Thomas-Fermi internal energy, for
which we use the local-density approximation �LDA�,

fTF =
3

5
�3�2�2/3 �2

2m
n5/3. �2�

The second term fGC represents the condensation energy, for
which we use the formula following from the Gorter-Casimir
two fluid model,10,11

fGC =
1

4
�Tc

2�ns

n
+ 2

T2

Tc
2�1 −

ns

n
� . �3�

The electrostatic energy density term reads

felst = −
1

2
�0E2 + e��n , �4�

in the form suitable for performing variations. For simplicity
we exclude the magnetic field and its related kinetic energy
of the screening current. We take the vector potential A to be
zero and write the GL gradient term as

fGL =
�2

2m�
�n

2����2. �5�

Here we have chosen the GL wave function � normalized
with respect to the total charge-carrier density n. In the spirit
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of the Thomas-Fermi approximation the charge carriers are
described by a wave function �n with n=�n

2 and the super-
conducting fluid density used in the formula for the conden-
sation energy �Eq. �3�	 reads

ns = 2�n
2�2. �6�

In short, the free energy is expressed by three independent
variables: the scalar potential � determining the electric field
E=−��, the GL wave function �, and the charge-carrier
wave function �n. We assume that the material parameters,
the critical temperature Tc, and the Sommerfeld parameter �
depend on the charge carrier’s density n, by using the fol-
lowing approximations:

��n� = �0�1 +
n − nlat

nlat

� ln �

� ln n
� , �7�

Tc�n� = Tc0�1 +
n − nlat

nlat

� ln Tc

� ln n
� , �8�

where nlat is the crystal lattice density. In the following we
shall use three characteristic lengths: �i� the Thomas-Fermi

screening length �TF
2 =

2�0

3ne2 EF, �ii� the Bohr radius aB=
4��0�2

me2 ,

and �iii� the coherence length 	0
2=

�2nlat

4�0Tc0
2 m

.
From the charge neutrality requirement we know that

�n
=�nlat �here and in the following the subscript 
 denotes
the magnitude far from the surface�. To keep things simple,
we use the following approximations:

�n = �nlat�1 + ��n� , �9�

� = �
�1 + ��� , �10�

e� = EF��
 + ��� , �11�

and suppose that the deviations of the three independent vari-
ables from the optimum values are small. In a homogeneous
superconductor far from the surface all these deviations are
zero and the derivatives of the free-energy formula �Eq. �1�	
with respect to them must be also zero. From these require-
ments we get the magnitudes of the optimum superfluid frac-
tion

�


�n


= �1 − t4 �12�

and the optimum magnitude of the scalar potential

�
 = − 1 +
2�TF

4

�2aB
2	0

2
2�1 − t4�
� ln Tc

� ln n
+ �1 + t4�

� ln �

� ln n
� .

�13�

The electrostatic potential energy of the charge carrier thus
equals the Fermi energy

EF =
�2

2m
�3�2n�2/3, �14�

with a small �lower than gap� correction represented by the
second term in Eq. �13�.

Using the second-order expansion of the free energy �Eq.
�1�	, from the variation we get three linear Euler-Lagrange
�EL� equations for the three independent variables, ��n, ��,
and �� as

3

4
�TF

2 �2�� + ��n = 0, �15�

�1 − t4�	t
2�2�� + t4�� + 4t4� ln Tc

� ln n
�� = 0, �16�


2t4� ln Tc

� ln n
� � ln Tc

� ln n
+ 2

� ln �

� ln n
� −

�2aB
2	t

2

12�TF
4 ���n

+ 2t4� ln Tc

� ln n
�� −

�2aB
2	t

2

16�TF
4 �� = 0. �17�

Close to the planar surface we can assume exponential de-
pendencies of the deviations and from the EL Eqs. �15�–�17�,
we get a second-order equation for the square of the expected
penetration depth �. Two solutions arise out of it.

Observing that �TF, aB�	0 we find a first approximate
solution � in the form of the coherencelike length

	t = 	0
2t2

�1 − t4
. �18�

In this solution the scalar potential is constant and local
charge neutrality is preserved. Only the deviation of the
wave function �� is nonzero �C	 will denote its magnitude�.

A very small penetration depth characterizes the second
solution such that this solution can be simplified. Using the
same approximation as above, we find that the second pen-
etration depth equals the Thomas-Fermi screening length
�TF. In this solution the scalar potential displays a sharp step
�CTF will denote its magnitude� and from the Poisson Eq.
�15� follows that the charge carrier’s density changes accord-
ingly. The sharp step on the GL wave function � is negligi-
bly small due to the factor �TF

2 /	t
2 which enters the resulting

formula. It corresponds to the well-known fact that the GL
wave function � cannot abruptly change.

The general solution can be written as a sum of the two
above-described solutions:

�� = CTF exp� − x

�TF
� , �19�

��n = −
3

4
CTF exp� − x

�TF
� , �20�

�� =
3�TF

2 t4

�1 − t4�	t
2

� ln Tc

� ln n
CTF exp� − x

�TF
� + C	 exp�− x

	t
� .

�21�

Here CTF describes the step of the scalar potential in units of
EF /e according to Eq. �11�. Using Eq. �19�–�21� we can
calculate the free energy
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F =� �3

5
+

2�1 + t4��TF
4

�2aB
2	0

2 �dr −
3

4
�TFCTF

2 +
8�TF

4 �1 − t4�
�aB

2	t

C	
2

+
48t4�TF

5

�2aB
2	t

2

� ln Tc

� ln n
CTFC	. �22�

For a semi-infinite medium the first term gives an infinite
contribution which is not influenced by the surface condi-
tions, so we do not need to deal with it. The last three terms
correspond to the surface energy, which according to the
principle of minimum free energy should take an extremum.
The minimum of the free energy is obtained for

C	 = −
3�TF	t

4	0
2

� ln Tc

� ln n
CTF, �23�

in which case the derivative of the wave function � at the
surface is zero. For lead at t=0.9 we get C	=−0.000 44CTF.
As expected, the deviation of the GL wave function �� is
much smaller compared to the sharp steps on the scalar po-
tential �� and on the charge-carrier wave function ��n.

We see that the principle of minimum free energy entails
the GL boundary condition. Toward the surface the GL wave
function �� displays a small gradual change, only very close
to the surface its derivative jumps to zero. The solution is
complete if the parameter CTF is determined. It can be de-
rived from the requirement of continuity with a solution
minimizing the total free energy including the one of the
vacuum outside.

III. FREE ENERGY OUTSIDE THE SLAB

Now we approximate the free-energy density outside the
superconductor by

F =� �fW + fGL + felst�dr . �24�

We include the electrostatic term, the GL gradient correction,
and the von Weizsäcker kinetic-energy functional,

fW =
�2

2m
���n�2. �25�

In the limit of rapidly varying densities this kinetic-energy
term is dominant, and when describing charge carriers tun-
neling outside the superconductor this term cannot be omit-
ted. We have not included this term into formula �5� describ-
ing the free energy inside. The reason is that inside the
superconductor the Thomas-Fermi internal energy plays the
dominant role and moreover, as it is shown, e.g., in the book
of Dreizler and Gross,12 in the limit of nearly homogeneous
systems the second-order term of the gradient expansion pro-
vides a better approximation. It has the same structure as the
von Weizsäcker kinetic-energy functional, but its coefficient
is nine times lower. We suppose that for the rough estimates
presented here this relatively small correction can be ne-
glected.

In the vacuum far from the surface the scalar potential
reaches the magnitude of the work function �W so that we
can approximate

e� = EF��W + ��� . �26�

The density of the tunneling charge carriers quickly drops to
zero. Using an analogous notation as above we write

�n = �nlat��n, �27�

supposedly that ��n is small. For the wave function � we use
the approximation

� = �̃
 + �� , �28�

where �̃
 represents the superfluid fraction in the vacuum far
from the surface. Let us remind that � is normalized to the

charge-carrier density, see Eq. �6�, so that �̃
 does not need
to be zero. The free-energy density in the vacuum thus reads

fout =
8�TF

4

�2aB
2 �2����n�2 + ��n

2����2	 −
3

4
�TF

2 �����2 + ��W

+ �����n
2, �29�

and we can write the Euler-Lagrange equations.
The variation with respect to the wave function � gives

the condition

��n
2�2�� = 0. �30�

We see that �� remains constant or changes linearly.
The proximity effects indicate that the correlated charge

carriers can remain correlated even if they are tunneling. For
simplicity we suppose that the superfluid fraction of the
charge carriers tunneling outside the material does not
change, so we take ��=��0�. The two other Euler-Lagrange
equations read

2�W��n −
32�TF

4

�2aB
2 �2��n = 0, �31�

��n
2 +

3

2
�TF

2 �2�� = 0. �32�

In the same way as above we can try the exponential solution

��n = Kn exp� x

�W
� , �33�

�� = K� exp� 2x

�W
� , �34�

where �W denotes the tunneling length which follows from
the Euler-Lagrange Eq. �32� as

�W =
�− 6K�

Kn
. �35�

The work function can be determined from Eq. �31� as

�W =
16�TF

4

�2aB
2�W

2 . �36�

In this way we have an approximate solution outside the
superconductor, which should be linked to the solution in-
side.
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IV. CONTINUITY REQUIREMENTS

At the surface the continuity of the wave function �n and
the continuity of the scalar potential � with its derivative
�continuity of the electric field� must be ensured. We get
three conditions,

2�TF
4

�2aB
2	0

2
2�1 − t4�
� ln Tc

� ln n
+ �1 + t4�

� ln �

� ln n
� − 1 + CTF

= K� −
8�TF

2

3�2aB
2

Kn
2

K�

, �37�

− CTF =
2K�Kn

�− 6K�

+ Ea, �38�

1 −
3

4
CTF = Kn �39�

where the term Ea representing the applied electric field is
included into the condition of continuity for the electric field.
From the continuity requirements Eqs. �37�–�39� we obtain
the equation

2�TF
4

�2aB
2	0

2�2�1 − t4�
� ln Tc

� ln n
+ �1 + t4�

� ln �

� ln n
�

−
�TF

2 �− 4 + 3CTF�4

144�2aB
2�CTF − Ea�2 +

24�CTF − Ea�2

�− 4 + 3CTF�2 − 1 + CTF = 0,

�40�

determining the step of the scalar potential CTF.

V. NUMERICAL VALUES

The sixth-order Eq. �40� can be numerically solved. For
small applied electric fields the linear expansion

CTF = CTF0 + �Ea �41�

is applicable, and for lead at temperature t=0.9 we get the
numerical solution

CTF = 0.457 − 0.53Ea. �42�

The numerical estimate for the tunneling length follows from
Eq. �35� to be �W=3.17�TF and the work function according
to Eq. �36� of �W=1.43 eV. Taking into account how many
simplifications we have used, it is surprising that the ob-
tained results seem to be quite reasonable. The estimated
magnitude of the work function is comparable with the ex-
perimentally determined value of �W=4.25 eV.13

The sharp step of the scalar potential can be estimated
from the modified Budd-Vannimenus theorem9 according to
which

e��
 − �0� = � � fel

�n
−

fel

n
� . �43�

Here fel denotes the spatial density of the electronic free
energy, which can be roughly approximated by the Thomas-

Fermi internal energy fTF defined in Eq. �2�. Then the Budd-
Vannimenus theorem �Eq. �43�	 predicts a sharp step,
CTF= 2

5 , of the scalar potential in units of EF /e. The numeri-
cal solution �Eq. �42�	 gives a comparable result what
strongly supports the applicability of the here used approxi-
mations.

We saw that the numerical values of the measurable quan-
tities are reasonable. In Fig. 1 the scalar potential is plotted.
As expected, inside the superconductor the scalar potential
acquires the Fermi energy value, while in the vacuum outside
it reaches the work function value �W. The dashed and dotted
lines correspond to the experimentally accessible applied
electric field Ea= 
0.01

EF

e�TF
� 
1.7�107 V /cm. As it is

seen in Fig. 2, the external electric field is screened on the
Thomas-Fermi screening length. In the Fig. 3 deviations of
the charge-carrier densities from the equilibrium values are
plotted. We can see that the magnitudes of these deviations
are small. Close to the surface the superfluid density ns de-
creases, and this decrease is compensated by an increase in
the normal fluid density nn. The total charge-carrier density n
shows no change on the scale of the coherence length.

VI. COMPARISONS WITH DE GENNES FORMULA

Now we compare the GL boundary condition following
from the minimum free-energy principle with the de Gennes
boundary condition14


��

�



0
= 
��

�



0
=

1

b
=

1

b0
+

Ea

Us
, �44�

according to which the derivative of the gap at the surface is
not exactly zero even without external electric field. The

FIG. 1. �Color online� The electrostatic potential � calculated
for lead at t=0.9 K. The dashed and dotted lines correspond to
applied electric field Ea= 
0.01.

FIG. 2. �Color online� Charge density �. To make the screening
visible, the dashed and dotted lines correspond to the applied elec-
tric field Ea= 
0.3.
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zero-field extrapolation length b0 is around 1 cm �almost
infinity from the microscopic point of view�. The effective
potential Us,

1

Us
=

3��TF
2

2	0
2

� ln Tc

� ln n

e

EF
, �45�

determines how the extrapolation length b changes if an ex-
ternal electric field Ea is applied.3 De Gennes estimated the
surface ratio,

� �
��0�
�0

, �46�

to be close to one. For lead formula �45� gives
Us=1.35�107 V. From the minimum free energy we know,
however, that the derivative at the surface should be zero. In
Fig. 4 we see how the deviation of the wave function � at the
surface decreases with the derivative determined by the pa-
rameter C	. From this we get the extrapolation length
b0�2.8 mm, a value comparable with the one estimated by
de Gennes. Only very close to the surface �on the distance of
the Thomas-Fermi screening length� the derivative of the
wave function � approaches zero �see insert of the Fig. 4�.

In Fig. 4 we can also observe how the extrapolation
length changes if an electric field Ea is applied. By substitut-
ing b=−	t /C	 into Eq. �44� and using Eq. �23� with the ap-
proximation �Eq. �41�	, we get a simple expression for the
effective potential Us,

1

Us
=

3��TF
2

4	0
2

� ln Tc

� ln n

e

EF
. �47�

This formula is similar to the de Gennes formula �Eq. �45�	.
We should notice, however, that in this formula the extrapo-
lation parameter � /2 of Eq. �41� appears instead of the sur-
face ratio � which enters the de Gennes formula �Eq. �45�	.

VII. CONCLUSIONS

It was shown in this paper that the minimum free-energy
principle entails a zero derivative of the wave function � at
the surface of the superconductor. On the scale of the coher-
ence length, however, even if no external electric field is
applied, the derivative is nonzero and its magnitude corre-
sponds to the de Gennes estimate. Only on the Thomas-
Fermi screening length scale it approaches zero. In the pres-
ence of an external electric field the extrapolation length
changes according to Eq. �44�, with the effective potential
given by Eq. �47�. This formula is similar to formula �45�
following from the de Gennes theory. The agreement with
the Budd-Vannimenus theorem and the numerical estimates
support the applicability of the proposed approach.

The present method does not include the periodic poten-
tial of ionic background. This jelly model is applicable to
simple metals, but it is not justified for systems with strong
space modulations of the electron charge, e.g., layered struc-
tures of high-Tc materials.
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